The Wiener–ikehara Theorem by Complex Analysis

نویسندگان

  • JAAP KOREVAAR
  • Juha M. Heinonen
چکیده

The Tauberian theorem of Wiener and Ikehara provides the most direct way to the prime number theorem. Here it is shown how Newman’s contour integration method can be adapted to establish the Wiener–Ikehara theorem. A simple special case suffices for the PNT. But what about the twin-prime problem?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributional Wiener–Ikehara theorem and twin primes

The Wiener–Ikehara theorem was devised to obtain a simple proof of the prime number theorem. It uses no other information about the zeta function ζ(z) than that it is zero-free and analytic for Re z 1, apart from a simple pole at z= 1 with residue 1. In the Wiener–Ikehara theorem, the boundary behavior of a Laplace transform in the complex plane plays a crucial role. Subtracting the principal s...

متن کامل

Nonharmonic Gabor Expansions

We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion‎. ‎In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity‎, ‎exactness and deficienc...

متن کامل

An Elementary Approach to Some Analytic Asymptotics

Fredman and Knuth have treated certain recurrences, such as M(O) 1 and M(n + 1) min (aM(k) + 3M(nk)) O 1, by means of auxiliary recurrences such as J" 0 if 0 _< x < 1, h(x) l+h(x/cz)+h(x//) ifl_<x< The asymptotic behavior of h(x) as x oo with a and 3 fixed depends on whether log a/logf is rational or irrational. The solution of Fredman and Knuth used analytic methods in bo...

متن کامل

Analogues of the Wiener-Tauberian and Schwartz theorems for radial functions on symmetric spaces

We prove a Wiener-Tauberian theorem for the L1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz type theorem for complex groups. As a corollary we obtain a Wiener-Tauberian type result for compactly supported distributions.

متن کامل

Common Fixed Point Results on Complex-Valued $S$-Metric Spaces

Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005